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In this talk I provide an overview of the modeling of vertical and lateral 

velocity gradients that can be sources of systematic error in Ocean Bottom 
Cable first-break positioning algorithms.  The mathematics of the solutions I 

propose are detailed in the paper accompanying this overview.  My thesis is 

simple.  By modeling sources of systematic error and by compensating for 

random first-break quality with a large number of observations, first-break 

coordinates can be as accurate as acoustics at less cost. 
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Orthogonal Shooting Style

By way of orientation I first show a schematic of the orthogonal shooting 

style in OBC.  There are cables with dual sensor detectors on the bottom 
connected to a recording and processing vessel shown in the middle.  The 

shooting vessel sailing perpendicularly to the swath is on the left.  This 

orthogonal style has certain geophysical and geodetic advantages, but in-

line shooting is also possible.
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Shooting Vessel with Towed Source

This picture shows the stern of a shooting vessel towing a source array.  

Notice the GPS antenna positioning the source array.  
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Stern of Cable-Laying Vessel

This picture is the back deck of a cable laying vessel showing the "squirter" 

at center stern for deploying the cables.



5

Real-Data Swath Subset
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This graphic shows a subset of a real-data swath that is extensively 

analyzed in this paper.  There are just 16 detectors that are coupled with 
acoustic sensors shown as circles and 2500 orthogonally-fired shots shown 

as plus signs.  Notice that this swath was shot around obstructions, an 

excellent use of OBC.



Methods of Positioning OBC Detectors

1 Drop positions (inexpensive but imprecise)

2 Acoustics (expensive but precise)

3 First breaks (inexpensive and precise)

• Combination of first breaks and acoustics

Source positioning in OBC is similar in technique and quality to source 

positioning in deep-water streamer surveys.  It basically consists of GPS 
antennas on the source array.  On the other hand, detector positioning 

techniques are less-widely standardized.  Three techniques are common in 

the industry.  (1) Recording and using the drop coordinates of the detectors.  

This is inexpensive, but often imprecise.  (2) Deploying high-frequency 

acoustic sensors attached to all or some of the detectors and positioned by a 
“pinging” survey independent of the seismic survey.  This technique is 

expensive and time consuming, but, properly executed, can be precise.  Or 

(3) using multiple occasions of the onset of seismic energy (called first 

breaks) as surveying observations in a positioning algorithm.  This technique 
is inexpensive because the data, personnel and software are already on the 

vessel to reposition the swath immediately after shooting.  Because we have 

so many first-break picks, it can be very precise as the laws of statistical 

error cancellation confirm.  A combination of first breaks and acoustics is 

also possible.



Acoustic Error Sources

• Detector depth

• Velocity of propagation

• Inadequate number of pings

• Inadequate geometry

• Instrumental delay

• Surface “ghosts”

• Vessel noise

• Muddy bottoms

In analyses that follow, I compare acoustic and first-break results.  So it is 

appropriate to overview some of the significant error sources associated with 
each of these systems.  Although acoustics provide a precise observable 

with low random error, positions can be systematically affected by incorrect 

detector depths for computing the slant range correction, by an incorrect 

knowledge of the velocity of acoustic propagation in water (especially due to 

thermal layering), by pinging too few times or in bad geometry or both, by 
instrumental delay, by multi-path (specifically surface "ghosts"), by interfering 

vessel noise and by muddy bottoms that mask the signal.  



First-Break Error Sources

• Random error (2 - 6 ms per pick)

• Source array dimensions and orientation

• Instrumental delay

• Definition of energy onset

• Vertical velocity gradient (water & 

refractors)

• Lateral velocity gradient

• Anomalous near-surface geology

On the other hand, first-break errors sources are a crude observable that 

may be good only to 3 to 9 meters or worse in a random sense, but we have 
a lot of them.  Given source-array dimensions and pick azimuth, simple 

programming can determine which gun at what coordinates generated the 

onset of energy.  Instrumental delay is also an issue.  Different first-break 

pickers may have different mathematical definitions of the onset of seismic 

energy.  I will explain in a moment what I mean by vertical and lateral 
velocity gradients.  A complex near-surface geology can be the toughest of 

all, when it occurs.  In this talk and in the accompanying paper I offer 

compensations for all these sources of first-break positioning error.



Vertical Velocity Gradient
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This graphic explains a vertical gradient.  It shows a single source event and 

the many paths the seismic energy may take to arrive first at each detector.  
Some detectors will see the energy first directly through the water.  But 

because the sedimentary layers may have velocities that increase with 

depth, the first break may arrive through one or more of these refractive 

layers.  Our objective is to use all this information in one automated 

positioning algorithm.
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Offset versus Pick Time

Pick time in milliseconds
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For the swath subset already seen, this graphic shows all pick offsets in 

meters on the Y axis plotted against all pick travel times in milliseconds 
before repositioning.  Offsets are defined as the Pythagorean distance 

between the source and drop coordinates.  The pick times are our

observations.  There are 23,000 of them. 
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Vertical-Gradient Polynomial
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Modeling the vertical gradient is accomplished by fitting these data with a 

polynomial of order sufficient to flatten the residuals.  Such a polynomial is 
shown in this graphic.  Notice that the polynomial does not cross the origin.  

The Y intercept at zero pick time absorbs two of the error sources previously 

mentioned, namely, instrumental delay and the definition of the onset of 

energy in the first-break picker.
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Real-Data, First-Order Residual Plot

Pick time in milliseconds

R
e

s
id

u
a
ls

 i
n

 m
e

te
rs

A residual is an important concept in geodetic adjustment theory.  A residual 

is the C-O, the computed minus the observed.  In this case it is the 
computed Pythagorean distance (or offset) for a given source-detector pair 

minus the distance corresponding to the related pick time substituted into the 

best fitting polynomial, in other words, the picks less the profile.  This graphic 

is a residual plot.  Residuals in meters on the Y axis are plotted against pick 

times in milliseconds on the X axis.  A first-order, linear polynomial was used 
to generate this plot.  In other words, the vertical gradient is not modeled.  

The trend as a function of pick time is obvious.  Variation in the velocity of 

propagation as a function of pick time and depth of refractor, can be implied 

from this plot.  Our objective is to flatten the residual plot. 
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Real-Data, Fifth-Order Residual Plot
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This is accomplished with a fifth-order polynomial to produce this graphic.  

Residuals are now zero mean over all offsets.  Some outliers are shown.  
They can now be easily distinguished from the good data and rejected.  The 

first differential of the best-fitting polynomial provides an equation of average 

velocity as a function of pick time.  In other words, the vertical gradient is 

modeled. 
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Omega Residuals without Pick Rejection 

This residual plots from Western's Omega processing system (and the next 

slide, too) show another prospect with poorer-quality picks.  No outlier 
rejection is applied in this slide.  Outlier rejection is applied in the next slide.  

Although it is hard to read, residuals on the Y axis span approximately 

plus/minus 700 meters (this slide) and plus/minus 100 meters (next slide).  It 

is obvious that pick rejection and a third-order vertical polynomial clean up 

the data on the next slide, now centered about zero for all offsets.  Notice 
that some complex, near-surface geology is exhibited in the near offsets on 

the next slide, with the far offsets behaving much better through the deeper 

travel paths. 
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Omega Residuals with Pick Rejection 

A lateral (or horizontal) velocity gradient is a variation in velocity as a 

function of position in a prospect.  Different than anisotropy, it may be 
uniform in all directions at a specific point, but vary over the entire prospect.  

A lateral gradient behaves like scale factor in what cartographers refer to as 

a conformal map projection.  It may be caused, for example, by a greater 

compaction of the recent sedimentation as one moves farther offshore. 

Since the refracted energy used in OBC first-break positioning primarily 
travels through the recent sedimentary, layers, a lateral gradient may 

sometimes be a factor in positioning results.  A simple least-squares 

algorithm will give erroneous results in the presence of a lateral gradient, 

with coordinates biased in the direction of the gradient. 
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Simulated Lateral Velocity Gradient
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This graphic shows a simulated lateral gradient.  It's linear, relatively mild 

and all in the Y coordinate.  Since the global vertical velocity trend has 
already been removed by the vertical profile, this gradient appears as 

numbers near unity, like the scale factors on a map. 
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Simulated-Data Residual Plot
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This graphic is a residual plot of synthetic data created using the lateral 

gradient on the previous slide.  The simulator models direct water arrivals 
and three distinct refractors that produce a vertical gradient. A normally 

distributed random error of 4 milliseconds (one sigma) is added to the 

simulated picks.  The picks are then rounded to the nearest 4 milliseconds to 

emulate a commonly-used sampling interval that produces excellent 

positioning results.  The effect of the vertical gradient is obvious in this 
graphic, which was computed with a linear vertical profile.  Since the velocity 

in each refractor is constant throughout its thickness in the simulator, one 

refractor “break” is quite distinct.  This sometimes occurs similarly in nature. 

These data will be visited again in the comparisons that follow.



12

Real-Data Swath Subset
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Now we return to this real-data example.
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Real-Data Computed Lateral-Velocity 

Gradient
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This graphic shows the lateral gradient computed from the real data prospect 

of the previous slide.  It is shown as a quadratic surface, a two-dimensional 
polynomial in X and Y coordinates.  The mathematics for computing this 

surface are derived in the accompanying paper.  Notice the gradient from 

north-west to south-east, the direction of this swath subset.  The peaks in 

the north-east and south-west are artifacts of extrapolating the quadratic 

surface into territory unconstrained by real data. 
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This graphic is a flow diagram of the algorithm I call Helmert because it uses 

the geodetic adjustment technique of Helmert-blocking for computational 
efficiency.  We start with our picks and our nominal coordinates.  The global 

vertical gradient for all picks in the entire swath is computed as previously 

described.  Then, in a simultaneous, network adjustment of all data, the 

coefficients of the lateral gradient are computed.  Using some intermediate 

matrix products, the coordinates of all detectors are computed. If 
convergence to some pre-defined tolerance is achieved, we are done.  If not, 

the nominal coordinates and the coefficients of the lateral gradient are 

updated and iteration continues until convergence. 
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Verification of Positioning Algorithm

1 Comparison with truth (synthetic data)

2 Comparison with acoustics (real data)

3 Data splitting into independent data 

samples (real or synthetic data)

- Randomly over entire offset range

- Near offsets versus far offsets

We can verify the efficacy of this approach in three ways: by comparison 

with truth using synthetic data, by comparison with acoustics using real data, 
and by splitting the picks into independent samples and comparing results.  

Such splits can be made randomly over the entire offset range or by dividing 

on offset into nears and fars.  Random splits always agree extremely well.  

Offset splits are a greater challenge that have important implications for 

dealing with an anomalous near-surface geology. 
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Algorithms Tested

1 Simple least squares (LS) with linear 

vertical profile

2 Simple least squares (LS) with higher-

order vertical profile

3 Complex least squares (Helmert) with 

both higher-order vertical profile and 

quadratic lateral gradient

I will show all these comparisons for three algorithms: simple least squares 

with a linear vertical profile only, simple least squares with a higher-order 
vertical profile only, and the Helmert algorithm that models both the vertical 

and lateral gradients. 



Simulated-Data Comparisons with Truth
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This bar chart and the next are reproduced as numerical tables with more 

information in the paper for closer examination at your leisure. Comparisons 
of synthetic data with the truth are first and comparisons of real data with 

acoustics are next.  Split data comparisons on offset are depicted by the 

fourth pair of bars for each algorithm.  On this slide notice that the LS 

algorithms without the lateral feature have trouble with ∆Y shown in maroon.  
This happens to be where all the lateral gradient is programmed in this 
synthetic data set.  Notice that modeling the vertical gradient in the middle 

LS algorithm provides only marginal benefit.  This is a consequence of the 

balanced geometry provided by orthogonal shooting.  The benefit becomes 

more pronounced with in-line shooting.  Notice that the Helmert algorithm 
nails the truth over all offset ranges and also in comparison between the 

nears and the fars. 



Real-Data Comparisons with Acoustics
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On this slide notice that the LS algorithms have trouble with both ∆X and ∆Y 
coordinates when compared with acoustics, although the near offsets 
perform much better than the far offsets.  On the other hand, the Helmert

algorithm compares at the 1 to 2 meter level over all offsets with acoustics.  

The Helmert nears and fars compare at about one meter or less, better than 

any comparison with acoustics directly.  These results suggest a small in-line 

bias in the acoustic data.  The paper details reasons having to do with 
delays in the GPS system why this may be so.  I encourage you to examine 

the tables and the accompanying commentary more closely in the paper.
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Benefits of Modeling Velocity Gradients

• Better fit to real-world geology

• Decrease predicted error of resulting coordinates

• Better rejection of outliers

• Simultaneous processing of direct and refracted 

arrivals without human intervention

• Widest possible pick offset range processed

• “Average out” positioning effects of near-surface 

geological anomalies

In conclusion, I list some of the benefits of modeling velocity gradients.  

Vertical and lateral velocity gradients are a reality in nature. Explicitly 
modeling them in the positioning algorithm better fits the geology and 

decreases coordinate predicted error.  Outlier rejection is facilitated.  Direct 

and refracted arrivals are processed together in one adjustment without 

human intervention.  Consequently, the widest possible pick offset range 

consistent with balanced geometry can be successfully processed. When 
we are confident that near and far offsets produce statistically-equivalent 

results we have a strategy for dealing with near-surface geological 

anomalies.  By processing over, through, under and around such anomalies 

we stand our best chance of "averaging out" their potential effect on our final 
coordinates. 


